Publications


2024


91) “ Two-Dimensional Electronic Spectroscopy Reveals Dynamics within the Bright Fine Structure of CdSe Quantum Dots” P Brosseau, D Jasrasaria, A Ghosh, H Seiler, S Palato, P Kambhampati The Journal of Physical Chemistry Letters 15, 1702-1707

2023


90) “ Perturbed free induction decay obscures early time dynamics in two-dimensional electronic spectroscopy: The case of semiconductor nanocrystals”,Patrick Brosseau, Hélène Seiler, Samuel Palato, Colin Sonnichsen, Harry Baker, Etienne Socie, Dallas Strandell, Patanjali Kambhampati The Journal of Chemical Physics 158(8) 084201 AIP Publishing LLC. DOI:doi.org/10.1063/5.0138252


89) “ Breaking Phonon Bottlenecks through Efficient Auger Processes in Perovskite Nanocrystals”,Harry Baker, Carlos Mora Perez, Colin Sonnichsen, Dallas Strandell, Oleg V Prezhdo, Patanjali Kambhampati ACS nano American Chemical Society (2023). DOI: 10.1021/acsnano.2c12220


88) “ Correlation between hysteresis dynamics and inductance in hybrid perovskite solar cells: studying the dependency on ETL/perovskite interfaces”,Rana Yekani, Hsien-chieh Chiu, Dallas Strandell, Zhuoran Wang, Stéphanie Bessette, Raynald Gauvin, Patanjali Kambhampati, George P Demopoulos Nanoscale 15(5) 2152-2161 (2023). DOI: 10.1039/D2NR05836G


87) “ A spectroscopic overview of the differences between the absorbing states and the emitting states in semiconductor perovskite nanocrystals”, A Ghosh, DP Strandell, P Kambhampati Nanoscale 15 (6), 2470-2487. DOI: 10.1039/D2NR05698D


86) “ Ultrafast hole relaxation dynamics in quantum dots revealed by two-dimensional electronic spectroscopy” PJ Brosseau, JJ Geuchies, D Jasrasaria, AJ Houtepen, E Rabani, communications Physics 6 (1), 48


85) “ A Brief Discussion of Chemical Kinetics versus Chemical Dynamics” P Kambhampati The Journal of Physical Chemistry Letters 14 (12), 2996-2999


84) “ Observing strongly confined multiexcitons in bulk-like CsPbBr3 nanocrystals” DP Strandell, P Kambhampati The Journal of Chemical Physics 158 (15)


83) “ Direct Observation of Higher Multiexciton Formation and Annihilation in CdSe Quantum Dots” DP Strandell, A Ghosh, D Zenatti, P Nagpal, P Kambhampati The Journal of Physical Chemistry Letters 14 (30), 6904-6911


82) “ Exciton–polaron interactions in metal halide perovskite nanocrystals revealed via two-dimensional electronic spectroscopy” P Brosseau, A Ghosh, H Seiler, D Strandell, P Kambhampati The Journal of Chemical Physics 159 (18)


81) “ Light Emission from CsPbBr3 Metal Halide Perovskite Nanocrystals Arises from Dual Emitting States with Distinct Lattice Couplings” DP Strandell, P Kambhampati Nano Letters 23 (23), 11330-11336


80) “ Breaking the Condon Approximation for Light Emission from Metal Halide Perovskite Nanocrystals” D Strandell, Y Wu, C Mora-Perez, O Prezhdo, P Kambhampati The Journal of Physical Chemistry Letters 14 (50), 11281-11285


79) “ Enhancing Multiexcitonic Emission in Metal-Halide Perovskites by Quantum Confinement” D Strandell, D Dirin, D Zenatti, P Nagpal, A Ghosh, G Raino, ACS nano 17 (24), 24910-24918


78) “ Hot Excitons Cool in Metal Halide Perovskite Nanocrystals as Fast as CdSe Nanocrystals DP Strandell, D Zenatti, P Nagpal, A Ghosh, DN Dirin, MV Kovalenko, ACS nano 18 (1), 1054-1062


77) “ Excitonic Quantum Coherence in Light Emission from CsPbBr3 Metal-Halide Perovskite Nanocrystals D Strandell, C Mora Perez, Y Wu, OV Prezhdo, P Kambhampati Nano Letters 24 (1), 61-66


2022


76) “ Watching excitations in perovskites undergo ultrafast relaxation to their emitting state”, D Strandell, C Sonnichsen, and P Kambhampati, J Phys Chem C, 126, 20505 (2022) DOI: 10.1021/acs.jpcc.2c06506


75) “ Ligand-Flexible Synthesis of Strongly Confined Perovskite Nanocrystals: A Microwave Synthetic Approach”, G Romero Esquivel, V Toader, L Reven, and P Kambhampati,Nanoscale, 14, 15789 (2022). DOI: 10.1021/acsami.7b03445


74) “ The Temperature Dependence of the Photoluminescence of CsPbBr3 Nanocrystals Reveals Phase Transitions and Homogeneous Linewidths” D Strandell and P Kambhampati, J Phys Chem C, 125, 27504 (2022). DOI: 10.1021/acs.jpcc.7b09903


2021


73) “ OPA-driven Hollow-core Fiber as a Tunable, Broadband Source for Coherent Multidimensional Spectroscopy”, C. Sonnichsen, P. Brosseau, C. Reid, and P. Kambhampati, Opt. Exp. 29, 18 (2021). DOI: 10.1364/OE.431988


72) “Resonance Raman Vibrational Mode Enhancement of Adsorbed Benzenethiols on CdSe Is Predominantly Franck–Condon in Nature and Governed by Symmetry” , T. G. Mack, J. Spinelli, M. P. Andrews, and P. Kambhampati, J. Phys. Chem. Lett. 12,33 (2021). DOI: 10.1021/acs.jpclett.1c02051


71) “Polaronic quantum confinement in bulk CsPbBr3 perovskite crystals revealed by state-resolved pump/probe spectroscopy” , C. D. Sonnichsen, D. P. Strandell, P. J. Brosseau, C. Reid and P. Kambhampati, Phys. Rev. Research 3, 023147 (2021). DOI: 10.1103/PhysRevResearch.3.023147


70) “Nanoparticles, Nanocrystals, and Quantum Dots: What are the Implications of Size in Colloidal Nanoscale Materials?” , P. Kambhampati, J. Phys. Chem. Lett. 12, 20 (2021). DOI: 10.1021/acs.jpclett.1c00754


2020


69) “Fifth-order two-quantum absorptive two-dimensional electronic spectroscopy of CdSe quantum dots” , P. Brosseau, S. Palato, H. Seiler, H. Baker, and P. Kambhampati, J. Chem. Phys. 153, 234703 (2020). DOI: 10.1063/5.0021381


68) “An analysis of hollow-core fiber for applications in coherent femtosecond spectroscopies” , S. Palato, H, Seiler, H. Baker, C. Sonnichsen, R. Zifkin, J. McGowan IV, P. Kambhampati, J. Appl. Phys. 128, 10 (2020). DOI: 10.1063/1.5113691


67) “Emitting State of Bulk CsPbBr3 Perovskite Nanocrystals Reveals a Quantum-Confined Excitonic Structure” , H. Baker, D. Strandell, and P. Kambhampati, J. Phys. Chem. 124, 34 (2020). DOI: 10.1021/acs.jpcc.0c05462


66) “Atomic fluctuations in electronic materials revealed by dephasing” , S. Palato, H. Seiler, P. Nijjar, O. Prezhdo, and P. Kambhampati, PNAS. 117, 22 (2020). DOI: 10.1073/pnas.1916792117


65) “Investigating the electronic structure of confined multiexcitons with nonlinear spectroscopies” , S. Palato, H. Seiler, H. Baker, C. Sonnichsen, P. Brosseau, and P. Kambhampati, J. Chem. Phys. 152, 104710 (2020). DOI: 10.1063/1.5142180


2019


64) “Two-dimensional electronic spectroscopy reveals liquid-like lineshape dynamics in CsPbI 3 perovskite nanocrystals” , H. Seiler, S. Palato, C. Sonnichsen, H. Baker, E. Socie, D. P. Strandell and P. Kambhampati, Nat. Commun. 10, 4962 (2019). DOI: 10.1038/s41467-019-12830-1


63) “A Strategy for Exploiting Self-Trapped Excitons in Semiconductor Nanocrystals for White Light Generation” , T. G. Mack, L. Jethi and P. Kambhampati, ACS Photonics 6, 5 (2019). DOI: 10.1021/acsphotonics.9b00212


62) “Direct Observation of Vibronic Coupling between Excitonic States of CdSe Nanocrystals and Their Passivating Ligands” , T. G. Mack, L. Jethi, M. Andrews and P. Kambhampati, J. Phys. Chem. 123, 8 (2019). DOI: 10.1021/acs.jpcc.8b11098


61) “Excited state phononic processes in semiconductor nanocrystals revealed by excitonic state-resolved pump/probe spectroscopy” , B. R. Walsh, C. D. Sonnichsen, T. G. Mack, J. I. Saari, M. M. Krause, R. Nick, S. Coe-Sullivan and P. Kambhampati, J. Phys. Chem. 123, 6 (2019). DOI: 10.1021/acs.jpcc.8b11099


60) “Photophysical Action Spectra of Emission from Semiconductor Nanocrystals Reveals Violations to Vavilov Rule Behavior from Hot Carrier Effects” , B. Li, P. J. Brosseau, D. P. Strandell, T. G. Mack and P. Kambhampati, J. Phys. Chem. 123, 8 (2019). DOI: 10.1021/acs.jpcc.8b11218


59) “Efficient Optical Gain in CdSe/CdS Dots-in-Rods” , C. D. Sonnichsen, T. Kipp, X. Tang and P. Kambhampati, ACS Photonics 6, 2 (2019). DOI: 10.1021/acsphotonics.8b01033


2018


58) “Investigating exciton structure and dynamics in colloidal CdSe quantum dots with two-dimensional electronic spectroscopy” , H. Seiler, S. Palato, P. Kambhampati, J. Chem. Phys. 149, 7 (2018). DOI: 10.1063/1.5037223


57) “Seeing Multiexcitons through Sample Inhomogeneity: Band-Edge Biexciton Structure in CdSe Nanocrystals Revealed by Two-Dimensional Electronic Spectroscopy” , H. Seiler, S. Palato, C. Sonnichsen, H. Baker, P. Kambhampati, Nano Lett. 18, 5 (2018). DOI: 10.1021/acs.nanolett.8b00470


2017


56) “Temperature Dependence of Emission Line Widths from Semiconductor Nanocrystals Reveals Vibronic Contributions to Line Broadening Processes” , T. G. Mack, L. Jethi, and P. Kambhampati, J. Phys. Chem. C 121, 51 (2017). DOI: 10.1021/acs.jpcc.7b09903


55) “Electron Dynamics at the Surface of Semiconductor Nanocrystals” , S. Palato, H. Seiler, L. McGovern, T. G. Mack, L. Jethi, P. Kambhampati, J. Phys. Chem. C 121, 47 (2017). DOI: 10.1021/acs.jpcc.7b09145


54) “Extending Semiconductor Nanocrystals from the Quantum Dot Regime to the Molecular Cluster Regime” , L. Jethi, T. G. Mack, P. Kambhampati, J. Phys. Chem. C 121, 46 (2017). DOI: 10.1021/acs.jpcc.7b08439


53) “Coherent Multi-Dimensional Spectroscopy at Optical Frequencies in a Single Beam with Optical Readout Coherent Multi-Dimensional Spectroscopy at Optical Frequencies in a Single Beam with Optical Readout” , H. Seiler, S. Palato, and P. Kambhampati, J. Chem. Phys. 147, 9 (2017). DOI: 10.1063/1.4990500


52) “Understanding and Exploiting the Interface of Semiconductor Nanocrystals for Light Emissive Applications” , P. Kambhampati, T. Mack, and L. Jethi, ACS Photonics 4, 412 (2017). DOI: 10.1021/acsphotonics.6b00951


51) “Simple Fiber-Based Solution for Coherent Multidimensional Spectroscopy in the Visible Regime”, H. Seiler, S. Palato, B. Schmidt, and P. Kambhampati, Opt. Lett. 42, 3 (2017). DOI: 10.1364/OL.42.000643


50) "Investigating the Influence of Ligands on the Surface-state Emission of Colloidal CdSe Quantum Dots", T. Mack, L. Jethi, M. Krause, and P. Kambhampati, Proc. SPIE 10114, (2017). DOI: 10.1117/12.2253441


2016


49) “The Effect of Exciton-Delocalizing Thiols on Intrinsic Dual Emitting Semiconductor Nanocrystals”, L. Jethi, T. G. Mack, M. M. Krause, S. Drake, and P. Kambhampati, ChemPhysChem 17, 665 (2016). DOI: 10.1002/cphc.201501049


48) “Interfacial Electronic Structure in Graded Shell Nanocrystals Dictates Their Performance for Optical Gain”, B. R. Walsh, J. I. Saari, M. M. Krause, T. G. Mack, R. Nick, S. Coe-Sullivan, and P. Kambhampati, J. Phys. Chem. C 120, 19409 (2016). DOI: 10.1021/acs.jpcc.6b05836


47) “Surface and Interface Effects on Non-Radiative Exciton Recombination and Relaxation Dynamics in CdSe/Cd,Zn,S Nanocrystals”, B. R. Walsh, J. I. Saari, M. M. Krause, R. Nick, S. Coe-Sullivan, and P. Kambhampati, Chem. Phys. 471, 11 (2016). DOI: 10.1016/j.chemphys.2015.11.004


2015


46) “Toward Ratiometric Nanothermometry via Intrinsic Dual Emission from Semiconductor Nanocrystals”, L. Jethi, M. M. Krause, and P. Kambhampati, J. Phys. Chem. Lett. 6, 718 (2015). DOI: 10.1021/acs.jpclett.5b00024


45) “Kilohertz Generation of High Contrast Polarization States for Visible Femtosecond Pulses via Phase-Locked Acousto-Optic Pulse Shapers” , H. Seiler, B. Walsh, S. Palato, A. Thai, V. Crozatier, N. Forget, and P. Kambhampati, J. Appl. Phys. 118, 103110 (2015). DOI: 10.1063/1.4929954


44) “On the Kinetics and Thermodynamics of Excitons at the Surface of Semiconductor Nanocrystals: Are There Surface Excitons?”, P. Kambhampati, Chem. Phys. 446, 92 (2015). DOI: 10.1016/j.chemphys.2014.11.008


43) “Ligand Surface Chemistry Dictates Light Emission from Nanocrystals”, M. M. Krause, L. Jethi, T. G. Mack, and P. Kambhampati, J. Phys. Chem. Lett. 6, 4292 (2015). DOI: 10.1021/acs.jpclett.5b02015


42) “Linking Surface Chemistry to Optical Properties of Semiconductor Nanocrystalsl”, M. M. Krause and P. Kambhampati, Phys. Chem. Chem. Phys. 17, 18882 (2015). DOI: 10.1039/c5cp02173a


41) “Unraveling Photoluminescence Quenching Pathways in Semiconductor Nanocrystals”, M. M. Krause, T. G. Mack, L. Jethi, A. Moniodis, J. D. Mooney, and P. Kambhampati, Chem. Phys. Lett. 633, 65 (2015). DOI: 10.1016/j.cplett.2015.05.017


40) “Controlling the Surface of Semiconductor Nanocrystals for Efficient Light Emission from Single Excitons to Multiexcitons”, B. R. Walsh, J. I. Saari, M. M. Krause, R. Nick, S. Coe-Sullivan, and P. Kambhampati, J. Phys. Chem. C 119, 16383 (2015). DOI: 10.1021/acs.jpcc.5b03853


2014


39) Correction to “Get the Basics Right: Jacobian Conversion of Wavelength and Energy Scales for Quantitative Analysis of Emission Spectra (vol 4, Pg 3316, 2013)”, J. Mooney and P. Kambhampati, J. Phys. Chem. Lett. 5, 3497 (2014). DOI: 10.1021/jz502066v


38) “Connecting the Dots: The Kinetics and Thermodynamics of Hot, Cold, and Surface-Trapped Excitons in Semiconductor Nanocrystals”, J. Mooney, M. M. Krause, and P. Kambhampati, J. Phys. Chem. C 118, 7730 (2014). DOI: 10.1021/jp502102a


2013


37) “Chemical and Thermodynamic Control of the Surface of Semiconductor Nanocrystals for Designer White Light Emitters”, M. M. Krause, J. Mooney, and P. Kambhampati, ACS Nano 7, 5922 (2013). DOI: 10.1021/nn401383t


36) “Get the Basics Right: Jacobian Conversion of Wavelength and Energy Scales for Quantitative Analysis of Emission Spectra”, J. Mooney and P. Kambhampati, J. Phys. Chem. Lett. 4, 3316 (2013). DOI: 10.1021/jz401508t


35) “A Microscopic Picture of Surface Charge Trapping in Semiconductor Nanocrystals”, J. Mooney, M. M. Krause, J. I. Saari, and P. Kambhampati, J. Chem. Phys. 138, (2013). DOI: 10.1063/1.4807054


34) “Control of Phonons in Semiconductor Nanocrystals via Femtosecond Pulse Chirp-Influenced Wavepacket Dynamics and Polarization”, J. Mooney, J. I. Saari, A. M. Kelley, M. M. Krause, B. R. Walsh, and P. Kambhampati, J. Phys. Chem. B 117, 15651 (2013). DOI: 10.1021/jp406323f  - Invited article for Michael Fayer Festschrift


33) “Ultrafast Electron Trapping at the Surface of Semiconductor Nanocrystals: Excitonic and Biexcitonic Processes”, J. I. Saari, E. A. Dias, D. Reifsnyder, M. M. Krause, B. R. Walsh, C. B. Murray, and P. Kambhampati, J. Phys. Chem. B 117, 4412 (2013). DOI: 10.1021/jp307668g


32) “Terahertz Bandwidth All-Optical Modulation and Logic Using Multiexcitons in Semiconductor Nanocrystals”, J. I. Saari, M. M. Krause, B. R. Walsh, and P. Kambhampati, Nano Lett. 13, 722 (2013). DOI: 10.1021/nl3044053


31) “Two-Color Two-Dimensional Electronic Spectroscopy Using Dual Acousto-Optic Pulse Shapers for Complete Amplitude, Phase, and Polarization Control of Femtosecond Laser Pulses”, P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, J. Phys. Chem. A 117, 6264 (2013). DOI: 10.1021/jp400603r


30) “Biography of Paul F. Barbara”, G. Walker, P. Kambhampati, C. Silva, and J. D. Simon, J. Phys. Chem. B 117, 4157 (2013). DOI: 10.1021/jp401719t


29) “Challenge to the Deep-Trap Model of the Surface in Semiconductor Nanocrystals” , J. Mooney, M. M. Krause, J. I. Saari, and P. Kambhampati, Phys. Rev. B 87, 081201 (2013). DOI: 10.1103/PhysRevB.87.081201


28) “Spectral and Spatial Contributions to White Light Generation from InGaN/GaN Dot-in-a-Wire Nanostructures”, Y. Kamali, B.R. Walsh, J.D. Mooney, H. Nguyen, C. Brosseau, R. Leonelli, Z. Mi, and P. Kambhampati, J. Appl. Phys., 114, 136305 (2013). DOI: 10.1063/1.4826618


2012


27) “Improving Optical Gain Performance in Semiconductor Quantum Dots via Coupled Quantum Shells”, E. A. Dias, J. I. Saari, P. Tyagi, and P. Kambhampati, J. Phys. Chem. C 116, 5407 (2012). DOI: 10.1021/jp211325x


26) “Multiexcitons in Semiconductor Nanocrystals: A Platform for Optoelectronics at High Carrier Concentration”, P. Kambhampati, J. Phys. Chem. Lett. 3, 1182 (2012). DOI: 10.1021/jz300239j


25) “Independent Control of Electron and Hole Localization in Core/Barrier/Shell Nanostructures”, P. Tyagi and P. Kambhampati, J. Phys. Chem. C 116, 8154 (2012). DOI: 10.1021/jp212158a


2011


24) “State-Resolved Observation in Real Time of the Structural Dynamics of Multiexcitons in Semiconductor Nanocrystals”, S.L. Sewall, R.R. Cooney, E.A. Dias, P. Tyagi, and P. Kambhampati, Phys. Rev. B 84, 235304 (2011). DOI:10.1103/PhysRevB.84.235304


23) “Hot Exciton Relaxation Dynamics in Semiconductor Quantum Dots: Radiationless Transitions on the Nanoscale”, P. Kambhampati, J. Phys. Chem. C 115, 22089 (2011). DOI: 10.1021/jp2058673 - Invited Feature Article, Cover Article.


22) “Fundamentals of the Quantum Confinement Effect”, P. Kambhampati, Book chapter in Handbook of Photoluminescent Semiconductor Materials – Taylor & Francis, (2011) - Invited


21) “Colloidal and Self-Assembled Quantum Dots for Optical Gain.”, P. Kambhampati, Z. Mi, and R.R. Cooney, Nanoscience Comprehensive - Elsevier, In: Andrews DL, Scholes, GD and Wiederrecht GP (eds.), Comprehensive Nanoscience and Technology, volume 1, pp. 493–542 Oxford: Academic Press (2011).


20) “False Multiple Exciton Recombination and Multiple Exciton Generation Signals in Semiconductor Quantum Dots Arise from Surface Charge Trapping”, P. Tyagi and P. Kambhampati, J. Chem. Phys. 134, (2011). DOI: 10.1063/1.3561063


19) “Large Piezoelectric Response in Semiconductor Quantum Dots Revealed by Coherent Acoustic Phonons”, P. Tyagi, R. Cooney, S. Sewall, D.M. Sagar, J. Saari, and P. Kambhampati, In Ultrafast Phenomena XVII, Oxford University Press, M. Chergui, D. Jonas, E. Riedle, R. Schoenlein, A. Taylor, Eds. (2011).


18) “Probing Multiexcitons in Quantum Dots via Femtosecond Pump/probe and Two-dimensional Electronic Spectroscopy”, P. Tyagi, S. Sewall, P. Wen, J Saari, D. Arias, K. Nelson, and P. Kambhampati, In Ultrafast Phenomena XVII, Oxford University Press, M. Chergui, D. Jonas, E. Riedle, R. Schoenlein, A. Taylor, Eds. (2011).


17) “Unraveling the Structure and Dynamics of Excitons in Semiconductor Quantum Dots”, P. Kambhampati, Acc. Chem. Res. 44, 1 (2011). DOI: 10.1021/ar1000428 - Invited


2010


16) “State-Resolved Exciton Dynamics in Quantum Dots”, P. Kambhampati, Proc. SPIE., 7758 (2010). DOI: 10.1117/12.862016


15) “Controlling Piezoelectric Response in Semiconductor Quantum Dots via Impulsive Charge Localization”, P. Tyagi, R. R. Cooney, S. L. Sewall, D. M. Sagar, J. I. Saari, and P. Kambhampati, Nano Lett. 10, 3062 (2010). DOI: 10.1021/nl101605r


2009


14) “State-Resolved Manipulations of Optical Gain in Semiconductor Quantum Dots: Size Universality, Gain Tailoring, and Surface Effects”, R. R. Cooney, S. L. Sewall, D. M. Sagar, and P. Kambhampati, J. Chem. Phys. 131, 164706 (2009). DOI: 10.1063/1.3254199


13) “Direct observation of the structure of band-edge biexcitons in colloidal semiconductor CdSe quantum dots”, S.L. Sewall, A. Franceschetti, R.R. Cooney, A. Zunger, and P. Kambhampati, Phys. Rev. B., 80, 081310(R) (2009). DOI: 10.1103/PhysRevB.80.081310


12) “Experimental tests of effective mass vs. atomistic pictures of quantum dot electronic structure”, S.L. Sewall, R.R. Cooney, and P. Kambhampati, Appl. Phys. Lett., 94, 243116 (2009).


11) “Gain control in semiconductor quantum dots via state-resolved optical pumping”, R.R. Cooney, S.L. Sewall, D.M. Sagar, and P. Kambhampati, Phys. Rev. Lett, 102, 127404 (2009). DOI:10.1103/PhysRevLett.102.12740


2008

10) “Single Dot Spectroscopy of Core/barrier/shell Nanocrystals”, E.A. Dias, A. Petrik, D.S. English, and P. Kambhampati, J. Phys. Chem. C, 112, 14229 (2008) - Letter.


9) “Single Dot Spectroscopy of Two-Color Quantum Dot/quantum Shell Nanostructures”, E. A. Dias, A. F. Grimes, D. S. English, and P. Kambhampati, J. Phys. Chem. C 112, 14229 (2008). DOI: 10.1021/jp806621q


8) “State-Resolved Exciton - Phonon Couplings in CdSe Semiconductor Quantum Dots”, D. M. Sagar, R. R. Cooney, S. L. Sewall, and P. Kambhampati, J. Phys. Chem. C 112, 9124 (2008). DOI: 10.1021/jp803386g


7) “Size Dependent, State-Resolved Studies of Exciton-Phonon Couplings in Strongly Confined Semiconductor Quantum Dots” , D. M. Sagar, R. R. Cooney, S. L. Sewall, E. A. Dias, M. M. Barsan, I. S. Butler, and P. Kambhampati, Phys. Rev. B 77, 235321 (2008). DOI: 10.1103/PhysRevB.77.235321


6) “State-Resolved Studies of Biexcitons and Surface Trapping Dynamics in Semiconductor Quantum Dots”, S. L. Sewall, R. R. Cooney, K. E. H. Anderson, E. A. Dias, D. M. Sagar, and P. Kambhampati, J. Chem. Phys. 129, 084701 (2008). DOI: 10.1063/1.2971181


2007


5) “Noise Analysis and Noise Reduction Methods in Kilohertz Pump-Probe Experiments Noise Analysis and Noise Reduction Methods in Kilohertz Pump-Probe Experiments” , K. E. H. Anderson, S. L. Sewall, R. R. Cooney, P. Kambhampati, K. E. H. Anderson, S. L. Sewall, R. R. Cooney, and P. Kambhampati, Rev. Sci. Instrum. 78, 073101 (2007). DOI: 10.1063/1.2755391


4) “Unified Picture of Electron and Hole Relaxation Pathways in Semiconductor Quantum Dots” , R. R. Cooney, S. L. Sewall, E. A. Dias, D. M. Sagar, K. E. H. Anderson, and P. Kambhampati, Phys. Rev. B 75, 245311 (2007). DOI: 10.1103/PhysRevB.75.245311


3) “Breaking the Phonon Bottleneck for Holes in Semiconductor Quantum Dots” , R. R. Cooney, S. L. Sewall, K. E. H. Anderson, E. A. Dias, and P. Kambhampati, Phys. Rev. Lett. 98, 177403 (2007). DOI: 10.1103/PhysRevLett.98.177403


2) “Light Harvesting and Carrier Transport in Core/barrier/shell Semiconductor Nanocrystals”, E. A. Dias, S. L. Sewall, and P. Kambhampati, J. Phys. Chem. C 111, 708 (2007). DOI: 10.1021/jp0658389


2006


1) “State-to-State Exciton Dynamics in Semiconductor Quantum Dots” , S. L. Sewall, R. R. Cooney, K. E. H. Anderson, E. A. Dias, and P. Kambhampati, Phys. Rev. B 74, 235328 (2006). DOI: 10.1103/PhysRevB.74.235328